metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander Rohde and Werner Urland*

Institut für Anorganische Chemie, Universität Hannover, Callinstrasse 9, D-30167 Hannover, Germany

Correspondence e-mail: urland@acc.uni-hannover.de

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ Disorder in main residue R factor = 0.025 wR factor = 0.052 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Octaaquaytterbium(III) tris(3-carboxy-4hydroxybenzenesulfonate) monohydrate

The title compound, $[Yb(H_2O)_8](C_7H_5O_6S)_3 \cdot H_2O$, was synthesized by the reaction of Yb_2O_3 with 5-sulfosalicylic acid in water. The compound contains $Yb(H_2O)_8^{3+}$ monomers; the 3-carboxy-4-hydroxybenzenesulfonate anions do not coordinate to ytterbium, but act as counter-anions.

Received 6 April 2006 Accepted 28 April 2006

Comment

In connection with our investigations of the structrural chemistry of lanthanide (Ln) carboxylates, we examined the Ln^{3+} complexes with 5-sulfosalicylic acid where until now only the neodymium (Wang *et al.*, 2004), samarium (Aliev *et al.*, 1994), and europium (Starynowicz, 2000) compounds are known. In contrast with these compounds where the anion is coordinated to the metal ion, the Yb³⁺ ion in the title compound, (I), is surrounded only by water molecules and the anion acts as counter-ion. These structural characteristics are known from lanthanide compounds with ethyl sulfates (Gerkin & Reppart, 1984) and trifluoromethanesulfonates (Chatterjee *et al.*, 1988).

The structure of $[Yb(H_2O)_8](H_2L)_3 \cdot H_2O$ ($H_3L = 3$ -carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid; $C_7H_6O_6S$)) is shown in Fig. 1. The Yb³⁺ ion is coordinated by eight water molecules, giving a square antiprismatic coordination. The Yb-O distances are between 2.278 (3) and 2.372 (4) Å (*cf.* Table 1) which is similar to other compounds with $[Yb(H_2O)_8]^{3+}$ cations (Makha *et al.*, 2005). There is one additional uncoordinated water molecule in the asymmetric unit. The organic anions are non-coordinating. The $[Yb(H_2O)_8]^{3+}$ cations, water molecules and H_2L^- anions are connected through a complex pattern of hydrogen-bonding interactions. Selected hydrogen-bond parameters are listed in Table 2. The crystal structure shows large Yb···Yb separations, the shortest internuclear distance being 6.792 (2) Å.

The extended structure is formed by π - π stacking of the organic anions (Janiak, 2000). The shortest orthogonal distance between two aromatic fragments is 3.422 (1) Å.

© 2006 International Union of Crystallography All rights reserved

View of the asymmetric unit of (I), with the labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

 $[Yb(H_2O)_8](H_2L)_3 \cdot H_2O$ was prepared by the reaction of 0.20 g Yb_2O_3 (1 mmol Yb^{3+}) and 0.76 g H_3L (3.5 mmol) in H_2O (10 ml) at about 323 K in a glass container. After 1 d, the remaining solid was filtered off. After a few weeks, colourless crystals were formed.

6202 independent reflections

 $R_{\rm int} = 0.051$

 $\theta_{\rm max} = 25.9^\circ$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.84 \text{ e} \text{ Å}^{-3}$

5073 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0265P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

Crystal data

$[Yb(H_2O)_8](C_7H_5O_6S)_3 \cdot H_2O$	V = 1712.6 (8) Å ³
$M_r = 986.69$	Z = 2
Triclinic, P1	$D_x = 1.913 \text{ Mg m}^{-3}$
a = 7.523 (2) Å	Mo $K\alpha$ radiation
b = 12.445 (4) Å	$\mu = 3.02 \text{ mm}^{-1}$
c = 19.475 (6) Å	T = 298 (2) K
$\alpha = 74.74 \ (3)^{\circ}$	Needle, colourless
$\beta = 82.28 \ (3)^{\circ}$	$0.59 \times 0.07 \times 0.07 \text{ mm}$
$\gamma = 77.68 \ (3)^{\circ}$	

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: none 24267 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.052$ S = 0.916202 reflections 541 parameters

Table 1

Selected bond lengths (Å).

Yb1-O2 2.305 (3) Yb1-O5 2.339 (3) Yb1-O4 2.321 (3) Yb1-O3 2.339 (3)	Yb1-07	2.278 (3)	Yb1-O6	2.338 (3)
Yb1-O4 2.321 (3) Yb1-O3 2.339 (3) Vb1-O3 2.339 (3) Vb1-O3 2.339 (3)	Yb1-O2	2.305 (3)	Yb1-O5	2.339 (3)
	Yb1-O4	2.321 (3)	Yb1-O3	2.339 (3)
Yb1-O1 2.328 (3) Yb1-O8 2.372 (4	Yb1-O1	2.328 (3)	Yb1-O8	2.372 (4)

Fable	2

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\overline{O1-H11O\cdotsO16^{i}}$	0.89 (4)	2.04 (4)	2.904 (4)	165 (6)
$O1-H12O\cdots O31^{ii}$	0.94 (4)	1.78 (4)	2.707 (5)	171 (7)
$O2-H21O\cdots O11^{iii}$	0.90 (4)	1.88 (4)	2.778 (4)	176 (7)
$O2-H22O\cdots O33A^{i}$	0.93 (4)	1.73 (5)	2.63 (2)	163 (7)
$O2-H22O\cdots O33^{i}$	0.93 (4)	1.88 (5)	2.690 (10)	145 (6)
$O3-H31O\cdots O12^{iv}$	0.95 (4)	1.81 (4)	2.757 (4)	171 (6)
$O3-H32O\cdots O14^{v}$	0.95 (4)	1.88 (4)	2.825 (4)	172 (6)
O4−H41 <i>O</i> ···O11	0.96 (4)	1.97 (5)	2.880 (4)	158 (6)
$O4-H42O\cdots O13^{vi}$	0.95 (4)	1.75 (4)	2.701 (4)	176 (7)
$O5-H51O\cdots O32A^{i}$	0.91 (4)	2.08 (6)	2.95 (4)	158 (6)
$O5-H51O\cdots O33^{i}$	0.91 (4)	2.07 (6)	2.777 (15)	133 (6)
$O5-H52O\cdots O22^{iv}$	0.93 (4)	1.97 (4)	2.862 (4)	161 (6)
$O6-H61O\cdots O24^{vii}$	0.91 (4)	2.03 (5)	2.866 (4)	152 (6)
$O6-H62O\cdots O32^{ii}$	0.92 (4)	1.77 (4)	2.688 (11)	175 (7)
$O6-H62O\cdots O32A^{ii}$	0.92 (4)	2.42 (7)	3.33 (5)	169 (6)
O7−H71 <i>O</i> ···O9	0.94 (4)	1.68 (4)	2.602 (5)	164 (7)
$O7-H72O\cdots O21^{iv}$	0.90 (4)	1.87 (4)	2.752 (4)	167 (7)
O8−H81 <i>O</i> ···O12	0.91 (4)	1.96 (5)	2.845 (4)	163 (7)
O8−H82 <i>O</i> ···O7	0.97 (4)	1.85 (5)	2.762 (5)	155 (6)
O8−H82O···O9	0.97 (4)	2.50 (7)	3.038 (5)	115 (5)
O9−H91O···O34 ^{vii}	0.92 (4)	1.88 (5)	2.776 (4)	164 (7)
O9−H92O···O23	0.96 (4)	1.78 (4)	2.720 (5)	165 (7)
$O15-H15O\cdots O21^{viii}$	0.82	1.84	2.640 (4)	165
O16-H160···O14	0.82	1.88	2.600 (4)	146
$O25-H25O\cdots O22^{ix}$	0.82	1.94	2.689 (4)	151
O26−H26O···O24	0.82	1.94	2.654 (4)	146
$O35-H35O\cdots O32^{x}$	0.82	1.93	2.700 (6)	156
$O35-H35O\cdots O32A^{x}$	0.82	1.98	2.720 (16)	150
O36−H36O···O34	0.82	1.93	2.644 (5)	145

Symmetry codes: (i) x + 1, y - 1, z; (ii) x, y - 1, z; (iii) -x + 2, -y, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y + 1, -z; (viii) -x, -y + 1, -z + 1; (ix) -x, -y + 1, -z; (x) -x + 1, -y + 2, -z.

All H atoms on C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of the carboxyl and hydroxyl groups were also positioned geometrically and refined as riding, with O—H = 0.82 Å and $U_{iso}(H) =$ $1.5U_{eq}(O)$. The positions of the water H atoms were not observed directly in Fourier maps. To include them and construct the hydrogenbond network, the method of Nardelli (1999), as implemented in the *WinGX* software (Farrugia, 1999), has been adopted. The full structure was then refined using restraints [O—H = 0.99 Å, H···H = 1.55 Å and $U_{iso}(H) = 1.5U_{eq}(O)$]. Atoms O32 and O33 are disordered over two positions, with site occupancies of 0.74 (4) and 0.26 (4).

Data collection: *IPDS Software* (Stoe & Cie, 1998); cell refinement: *IPDS Software*; data reduction: *IPDS Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL97*.

References

- Aliev, Z. G., Baranova, T. A., Atovmyan, L. O. & Pirkes, S. B. (1994). Koord. Khim. 20, 150–152.
- Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Chatterjee, A., Maslen, E. N. & Watson, K. J. (1988). Acta Cryst. B44, 381–386. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Gerkin, R. E. & Reppart, W. J. (1984). Acta Cryst. C40, 781-786.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.

Makha, M., Raston, C. L., Sobolev, A. N. & White, A. H. (2005). Chem. Commun. pp. 1962–1964.

- Nardelli, M. (1999). J. Appl. Cryst. **32**, 563–571. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Starynowicz, P. (2000). J. Alloys Compd. 305, 117-120.

Stoe & Cie (1998). IPDS Software. Version 2.87. Stoe & Cie GmbH, Darmstadt, Germany.

Wang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). *Acta Cryst.* C60, m657–m658.